

Preclinical Characterization of NTX-452, a Potent, Selective and Highly Efficacious WRN Inhibitor for the Treatment of MSI-H Tumors

Scott Boiko¹, Sam Carreiro¹, Beth Browning¹, Derun Li¹, Angela Toms¹, Justin Caravella¹, Florian Bartels², Nikolay Sitnikov², Silvana Leit¹, Suzanne Jacques-O'Hagan¹, Hyesun Oh¹, Emily Florine¹, Zhenhong Li¹, Avinash Phadke¹, Yuet Mei Khong¹, Shawn Britt¹, John Alexander¹, Anita Scheuber¹, Peter Tummino¹ and Rob Svensson^{1a}

¹Nimbus Therapeutics, Boston, MA, USA; ²Nuvisan, Berlin, Germany; ^aPresenting author: Rob Svensson (rob.svensson@nimbustx.com)

356

BACKGROUND

Microsatellite instability (MSI-H) is a phenotypic consequence of defective mismatch repair (dMMR) and occurs in various tumor types, including up to 15% of colorectal, 10% of gastric, and 30% of endometrial cancers. While the treatment landscape of MSI-H is improving with the use of immune checkpoint inhibitors, significant unmet medical need remains across several MSI-H tumor types that fail to respond, or eventually relapse, with current standard of care therapies. Werner Syndrome Helicase (WRN) has been validated as a promising synthetic lethal drug target for MSI-H tumors, thus inhibitors of WRN may offer a novel therapeutic option for patients with MSI-H tumors.

Figure 1: MSI-H Tumors Require WRN Helicase Activity for Survival

Long TA-repeats	WRN unwinds
form cruciform	cruciform DNA
DNA that stall	
DNA replication	

DNA

Figure 2: NTX-452 Suppresses Viability of Human MSI-H Cells & **MSI-H** Patient Derived Organoids In Vitro

Figure 3: NTX-452 Elicits a DNA Damage Response in MSI-H

Figure 6: Daily Oral NTX-452 Treatment Promotes Durable **Tumor Regression and Complete Responses of Multiple MSI-H** CDX Tumor Models In Vivo at Low Doses with No Effect in the MSS SW620 Model

MATERIALS AND METHODS

We developed a series of novel, allosteric, potent and selective inhibitors of WRN helicase activity with best-in-class potential. Drug properties, safety, selectivity, potency and mechanism of action of one inhibitor, NTX-452, was characterized in preclinical assays. NTX-452 was also tested for its synthetic lethal potency in MSI-H and MSS tumor cells. Additionally, the pharmacodynamic activity and anti-tumor efficacy of NTX-452 was determined in cell line derived xenograft (CDX) and patient derived xenograft (PDX) tumor models.

RESULTS

• NTX-452 is a potent and selective WRN inhibitor (WRNi) with favorable drug-like properties (**Table 1**):

- Non-covalent, reversible inhibition of WRN helicase activity without affecting exonuclease activity
- High selectivity for WRN, with no inhibition of BLM (closest RecQ family member) and low/no off-target effects in a panel of enzymes, receptors, and ion channels, including hERG and CYPs

Figure 4: NTX-452 Elicits a p21 and y-H2AX Pharmacodynamic **Response in Human MSI-H SW48 CRC Xenograft Tumors** *In Vivo*

Figure 7: NTX-452 Promotes Durable Tumor Regression and **Complete Responses in MSI-H PDX Models Refractory to Immunotherapy (PD1) and Chemotherapy**

- Negative in *in vitro* genotoxicity assays (AMES and MNT)
- Excellent metabolic stability, low *in vivo* clearance, good oral bioavailability and high oral exposures in rodents and non-rodents
- NTX-452 treatment of MSI-H tumor cells triggers a DNA damage response that suppresses cell viability and promotes cell death, an effect that is not observed in MSS cells, confirming synthetic lethality (Fig 2, 3)
- NTX-452 treatment leads to low dose tumor regression and complete responses in multiple human MSI-H CDX and PDX models:
- Colorectal cancer and endometrial CDX (SW48, LS411N, HCT116, LoVo, less-sensitive RKO, Ishikawa) (Fig 5, 6),
- Colorectal cancer PDX model refractory to anti-PD1 (Fig 7)
- Gastric PDX and chemo-refractory PDX models (Fig 7, 8)
- Highly efficacious across diverse CRC and Gastric PDX tumor models (Fig 8)
- These results highlight the broad potential of NTX-452 in MSI-H tumors when evaluated alongside irinotecan and other noncovalent WRNi in development such as HRO761 (Novartis)

Table 1: Drug Profile of Nimbus Non-Covalent WRN Inhibitor **NTX-452**

	Test System	NTX-452	
Mechanism		Non-Covalent	le se
Biochemical	WRN ATPase IC ₅₀ (µM)	0.009	
	BLM ATPase IC ₅₀ (µM)	>100	
	WRN DNA unwinding IC_{50} (µM)	0.007	
	WRN Exonuclease IC ₅₀ (µM)	>100	r H
Cell 24h p21 EC ₅₀	MSI-H: SW48, HCT116 (µM)	0.04, 0.04	
MSI-H vs. MSS	MSS: SW620, SKCO-1 (µM)	>10	
Cell 5-day Viability IC ₅₀ MSI-H vs. MSS	MSI-H: SW48, HCT116 (µM)	0.02, 0.02	
	MSS: SW620, SKCO-1 (µM)	>10	
PK	Mu CL / T1/2 (h) / Vss (L/Kg) / %F	1.8 / 1.3 / 0.2 / 84	
	R CL / T1/2 (h) / Vss (L/Kg) / %F	6.8 / 3.2 / 0.7 / 80	
	D CL / T1/2 (h) / Vss (L/Kg) / %F	2.4 / 6.4 / 1.1 / 52	
	NHP CL / T1/2 (h) / Vss (L/Kg) / %F	0.33 / 8.0 / 0.2 / 57	
<i>In Vivo</i> Efficacy MSI-H: Fully efficacious Regression Dose	SW48, HC116 Xenograft Tumors	5 mg/kg PO QD	
Safety	hERG IC ₅₀ (μM)	>30	
	CYP IC ₅₀ / TDI / PXR activation	> 30 µM/ No/ No	
	Ames and MNT	Negative	
	Off target and Safety panels	No Liability	
Predicted Human Dose		Low	

Figure 5: NTX-452 Promotes Tumor Regression and Complete **Responses of MSI-H SW48 CRC CDX Tumors In Vivo**

- QD oral dosing for 20-days
- Regressions achieved at 5mg/kg PO QD
- NTX-452 is well tolerated

Figure 8: NTX-452 is Highly Efficacious Across MSI-H CRC and **Gastric Cancer PDX Tumor Models with Diverse Genomic and Clinical Characteristics**

CONCLUSIONS

• Our WRNi candidate, NTX-452, demonstrates excellent drug properties, robust *in vivo* efficacy across multiple preclinical MSI-H CDX and PDX tumor models, and the potential for a low efficacious dose in humans.

• These findings position NTX-452 as a promising therapeutic option for MSI-H cancer patients and support exploration in a clinical study.

Presented at the 2024 EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Barcelona, Spain, October 23-25, 2024

Supported by Nimbus Therapeutics, Boston, MA